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Abstract

In this paper we describe a process of algorithmic discovery that was driven by our goal of
achieving complete, mechanically verified algorithms that compute conflict prevention bands for use
in en route air traffic management. The algorithms were originally defined in the PVS specification
language and subsequently have been implemented in Java and C++. We do not present the proofs
in this paper: instead, we describe the process of discovery and the key ideas that enabled the final
formal proof of correctness.

1 Introduction

The formal methods team at NASA Langley has developed air traffic separation algorithms for the last
10 years. Given the safety-critical nature of these algorithms, we have emphasized formal verification
of the correct operation of these algorithms. In February of 2008, Ricky Butler and Jeffrey Maddalon
started a project to develop and formally verify algorithms that compute conflict prevention bands for en
route aircraft.

In air traffic management systems, a conflict prevention system senses nearby aircraft and provides
ranges of maneuvers that avoid conflicts with these aircraft. The maneuvers are typically constrained
to ones where only one parameter is varied at a time: track angles, vertical speeds, or ground speeds.
Such maneuvers are easy for pilots to fly and have the advantage that they can be presented in terms
of prevention bands, i.e. ranges of parameter values that should be avoided. Prevention bands display
the maneuvers that result in conflict within a specified lookahead time as a function of one parameter.
Without conflict prevention information, a pilot might create another conflict while seeking to solve a
primary conflict or otherwise changing the flight plan.

The National Aerospace Laboratory (NLR) in the Netherlands refers to their conflict prevention capa-
bility as Predictive Airborne Separation Assurance System or Predictive ASAS [3]. The NLR approach
provides two sets of bands: near-term conflicts are shown in red, while intermediate-term conflicts are
shown in amber as illustrated in Figure 1. We did not directly analyze the NLR system because the
algorithms were not available to us; however, we did use some of their interface ideas.

When we began this project, we had no idea that this project would take almost two years to com-
plete and that four additional formal methods researchers would join our effort before we were done.
This project has been one of the most interesting and enjoyable projects that we have worked on in our
careers. The reason for this is manifold: (1) the work resulted in a very elegant algorithm that is imple-
mented in Java and C++, (2) the final algorithm was very different from our first ideas, (3) there were
many, many discoveries that were surprising. (At some points in the project we were having daily in-
sights that improved the algorithm or a proof), (4) on the surface the problem looks simple, but looks can
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Figure 1: Compass Rose with Conflict Prevention Bands

be deceiving and the problem is actually very subtle with many special cases. After studying the prob-
lem for over a year, we developed an algorithm and rigorously documented this algorithm in a NASA
Technical Memorandum [8]. We also formalized much of the mathematical development in the paper.
We planned to follow up this paper with another paper that documented a complete formal proof of this
algorithm. Much to our surprise this final formal proof step found some deficiencies in our algorithm.
These deficiencies were repaired and a formal proof in the Prototype Verification System (PVS) [9] was
finally completed in November 2009.

In this paper we will present a brief history of this project and highlight how the goal of formally
verifying the algorithm in the PVS theorem prover pushed us to new discoveries. In addition to finding
some subtle problems in the initial approach, we are confident that many of the discoveries would not
have been made if we had taken a more traditional approach of constructing algorithms, testing, and
revising them until they worked.

2 Notation

We consider two aircraft, the ownship and the traffic aircraft, that are potentially in conflict in a 3-
dimensional airspace. The conflict prevention algorithm discussed here only uses state-based informa-
tion, e.g,. initial position and velocity and straight line trajectories, i.e., constant velocity vectors in an
Euclidean airspace. These approximations of real aircraft behavior are valid for short lookahead times
(typically less than 5 minutes).

We use the following notations:

so 3D vector Initial position of the ownship aircraft
vo 3D vector Initial velocity of the ownship aircraft
si 3D vector Initial position of the traffic aircraft
vi 3D vector Initial velocity of the traffic aircraft

The components of each vector are scalar values, so they are represented without the bold-face font, for
example so = (sox,soy,soz). As a simplifying assumption, we regard the position and velocity vectors as
accurate and without error. For notational convenience, we use v2 = v · v and we denote by gs(v) the

ground speed of v, i.e., the norm of the 2-dimensional projection of v: gs(v) =
√

v2
x + v2

y .
In the airspace system, the separation criteria are specified as a minimum horizontal separation D and

a minimum vertical separation H (typically, D is 5 nautical miles and H is 1000 feet). It is convenient to
develop the theory using a translated coordinate system. The relative position s is defined to be s = so−si

and relative velocity of the ownship with respect to the traffic aircraft is denoted by v = vo− vi. With
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Figure 2: Translated Coordinate System

these vectors the traffic aircraft is at the center of the coordinate system and does not move. For example
in the left side of Figure 2, the blue (upper) point represents the ownship with its velocity vector and
its avoidance area (circle of diameter D around the aircraft). The magenta (lower) point represents the
traffic aircraft. The right side represents the same information in the translated coordinate system. In a
3-dimensional airspace, the separation criteria defines a cylinder of radius D and half-height H around
the traffic aircraft. This cylinder is called the protected zone.

In Figure 2, the two aircraft are potentially in conflict because the half-line defined by the relative
velocity vector v intersects the protected area, meaning that in some future time the ownship will enter
the protected zone around the traffic. If this future time is within the lookahead time T , the two aircraft
are said to be in conflict.

3 The Start of the Project

We began our project by first surveying the literature for previous solutions. Hoekstra [4] describes
some algorithms developed at NLR with some diagrams [3], but unfortunately he did not provide much
detail about how the algorithms actually worked. We decided to develop our own track angle, ground
speed, and vertical speed algorithms. In this paper, we will only present the track band algorithm. These
are the most challenging and interesting of the three and the other bands are computed and verified
using analogous methods. We adopted the NLR idea of introducing two parameters, Tred (typically three
minutes) and Tamber (typically five minutes), which divide the set of conflicts based on their nearness (in
time) to a loss of separation (see figure 1). If a loss of separation will occur within Tred , then the region
is colored red. On the other hand, if a loss of separation will occur after Tred , but before Tamber, then the
region is colored amber, otherwise it is painted green.

We first recognized that each aircraft’s contribution to the prevention band is independent of all other
aircraft; thus, the problem neatly decomposes into two steps:

1. Solve the bands problem for the ownship relative to each other aircraft separately.

2. Merge all of the pairwise regions.

We also quickly realized that an iterative solution was possible for the first step. We already had a
formally proven, efficient algorithm available to us named CD3D that decides if a conflict occurs for
specific values of so, vo, si, and vi, and parameters D, H, and T . More formally, CD3D determines whether
there exists a future time t where the aircraft positions so+tvo and si+tvi are within a horizontal distance
D of each other and where the aircraft are within vertical distance H of each other. In other words there
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is a predicted loss of separation within the lookahead time. Therefore, one need only to execute CD3D

iteratively, varying the track angle from 0 to 360◦ per traffic aircraft. By evaluating different scenarios,
we determined that a step size of 0.1◦ would be adequate for ranges of up to 200 nautical miles. An
iterative approach would consume more computational resources than an analytical one where the edges
of the bands are computed directly. An iterative approach may not scale well where such separation
assurance algorithms must be executed for many different traffic aircraft every second. Despite these
disadvantages, the existence of an iterative approach provided a fall-back position: if we were not able
to discover a formally verifiable analytical solution, then we knew we could use the interative approach.

4 Search for an Analytical Solution

To solve the prevention bands problem in an analytical way, it is useful to define separate horizontal and
vertical notions of conflict. In the relative coordinate system, we define that a horizontal conflict occurs if
there exists a future time t within the lookahead time T where the aircraft are within horizontal distance
D of each other, i.e., (sx + tvx)

2 +(sy + tvy)
2 < D2. where s and v are, respectively, the relative position

and the relative velocity of the ownship with respect to the traffic aircraft. A vertical conflict occurs if
there exists a future time t within the lookahead time T where the aircraft are within horizontal distance
H of each other, i.e., |sz + tvz|< H. We say that two aircraft are in conflict if there is a time t where they
are in horizontal and vertical conflict. Formally, we define the predicate conflict? as follows

conflict?(s,v) ≡ ∃ 0≤ t ≤ T : (sx + tvx)
2 +(sy + tvy)

2 < D2 and |sz + tvz|< H. (1)

4.1 Track Only Geometric Solution

We begin with a non-translated perspective shown in Figure 3. The track angle is denoted by α1. For
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Figure 3: Two Dimensional Version of Track Bands Problem

given vectors vo and vi, we need to find the track angles α such that the relative vector vα = voα −vi:

vα = (|vo|cosα− vix, |vo|sinα− viy), (2)

is not in conflict.
Our initial approach was to divide the conflict prevention problem into simplifying cases. We dis-

covered later that this division was unnecessary and more elegant formulations provided the necessary
leverage to formally verify the algorithm. In any case, we decided to first solve the track bands problem
in two dimensions without consideration of the lookahead time. We also decided to ignore vertical speed

1In air traffic management, the track angle is calculated from true north in a clockwise direction, but here we have followed
the traditional mathematical definition.
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considerations and look at the horizontal plane only. The problem thus reduced to finding the tangent
lines to the horizontal protection zone (in the relative frame of reference) as a function of α . We begin
with the observation that in order for a vector to be tangent it must intersect the circle of the protection
zone. In other words, we need solutions of |s+ tvα |= D or equivalently

(s+ tvα)
2 = D2 (3)

where the vectors are two-dimensional. Expanding we obtain a quadratic equation at2 +bt + c = 0 with
a = vα

2, b = 2(s ·vα), and c = s2−D2. The tangent lines are precisely those where the discriminant of
this equation is zero. In other words, where b2−4ac = 0. But, expanding the dot products yield:

b2 = 4[sx(ω cosα− vix)+ sy( ω sinα− viy)]
2

4ac = 4(ω2−2ω(vix cosα + viysinα)+ v2)(s · s−D2)

The discriminant finally expands into a complex second-order polynomial in sinα and cosα . But to
solve for α , we need to eliminate the cosα using the equation

cosα =
√

1−sin2α

The net result is an unbelievably complex fourth order polynomial in sinα . Solving for α analytically
would require the use of the quartic formulas. Although these formulas are complicated, such a program
could probably be written in a day or two. But, how would we verify these solutions? After all, the
quartic equations involve the use of complex analysis. Therefore, we began to look for simplifications.

We found a simplification of the discriminant that had been used in the verification of the KB3D
algorithm [6]:

b2−4ac = 0 if and only if (s ·v) = Rε det(s,v), (4)

where ε ∈ {−1,+1}, det(s,v) ≡ s⊥ · v, s⊥ = (−sy,sx), and R =
√

s2−D2

D . The beauty of the final form
is that the equation is linear on v. The two solutions are captured in the two values of ε . When we
instantiate vα in this formula, we end up with a quadratic equation in sinα .

Using this approach, we were able to derive the following solutions for α . If |G|√
E2+F2 ≤ 1 then in

some 2π range, we have

α1 = asin

(
G√

E2 +F2

)
−atan(E,F),

α2 = π−asin

(
G√

E2 +F2

)
−atan(E,F),

where
E = ω(Rεsx− sy), F =−ω(Rεsy + sx), G = vi · (Rε s⊥− s),

Since E, F , and G are all functions of ε , we have two pairs of α1 and α2 or a total of four total angles.
These angles are the places where the track prevention band changes color, assuming no lookahead time.
This result was formalized in the PVS theorem prover and implemented in Java.

4.2 Solution with Lookahead Time

The solution presented so far only considers the 2-dimensional case with no lookahead time. Figure 4
illustrates three distinct cases that appear when the lookahead time is considered: (a) the protection zone
is totally within lookahead time, (b) the zone is partially within, and (c) the zone is totally beyond the
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Figure 4: Relationship of Encounter Geometry and Lookahead Time

lookahead time. Cases (a) and (c) were easy to handle, but we realized that case (b) was going to take
some additional analysis. We were quite pleased with our initial geometric result and decided to present
the result to our branch head and research director. During the presentation, a member of the original
KB3D team announced, “I think you can solve this problem without trigonometry,” and he urged us
to defer the use of trigonometry until the last possible moment. In other words, he suggested that we
solve for (vα) without expanding its components. Only after the appropriate abstract solution vector is
found, should the conversion to a track angle, α , be made. This was a key idea that had been used in the
development of the KB3D algorithms, which resulted in very efficient and elegant algebraic solutions [1].
Indeed, we realized that the geometric problem was solvable by a particular kind of KB3D resolutions
called track lines, computed by the function track_line:

track_line(s,vo,vi,ε,ι): Vect2

The function track line returns the vector 0 when all track angles for the ownship yield a potential
conflict. Otherwise, the vector returned by this function is a velocity vector for the ownship that is tangent
to the 2-dimensional protected zone. Since ε and ι are±1, there are four possible track line solutions for
given s, vo, and vi .

The key to solving track bands with a lookahead time is to find where the projected lookahead time
intersects the protected zone. That is, plot where the relative position of the aircraft will be after T units of
time in every possible direction given an unchanged ground speed and find the intersection points with
the protection zone. The function track_circle, also available in KB3D, provides these solutions,
which are called track circle solutions.

The function track_circle

track_circle(s,vo,vi,T,ι): Vect2

returns the vector 0 when there are no track circle solutions, i.e., when the lookahead time boundary T
and the protected zone do not intersect, or when there are an infinite number of solutions. Otherwise,
the vector returned by this function is a velocity vector for the ownship that intersects the 2-dimensional
protected zone at a time later than T . Since ι is ±1, for given s, vo, and vi there are two possible track
circle solutions. The track_line and track_circle functions are derived and discussed in [8].

We believe that the lookahead problem would not have been analytically tractable using the trigono-
metric approach pursued at first. This switch to a pure algebraic approach was fundamental to achieving
the final proof of the 3-dimensional bands algorithm.

4.3 The Track Bands Algorithm

The two functions, track_line and track_circle, form the basis of the track bands algorithm. We
define a critical vector as a relative velocity vector where the color of the bands may change. These
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critical vectors are

Rmm = track line(s,vo,vi,−1,−1),
Rmp = track line(s,vo,vi,−1,+1),
Rpm = track line(s,vo,vi,+1,−1),
Rpp = track line(s,vo,vi,+1,+1),
Crm = track circle(s,vo,vi,Tred ,−1),
Crp = track circle(s,vo,vi,Tred ,+1),
Cam = track circle(s,vo,vi,Tamber,−1),
Cap = track circle(s,vo,vi,Tamber,+1),
Cem = track circle(s,vo,vi, tentry,−1),
Cep = track circle(s,vo,vi, tentry,+1),
Cxm = track circle(s,vo,vi, texit ,−1),
Cxp = track circle(s,vo,vi, texit ,+1).

Some of these vectors may be zero vectors in which case they are ignored. The times tentry and texit are
the calculated entry and exit times into the protection zone.

In the track bands algorithm, these vectors are calculated, the corresponding track angles (using
atan) are computed and sorted into a list of angles. Next, the angles 0 and 2π are added to the list to
provide appropriate bounding. Then, a conflict probe (such as CD3D) us applied to an angle between
each of the critical angles to characterize the whole region (i.e., determine which color the region should
be painted: green, amber, or red). This procedure is iterated between the ownship and all traffic aircraft.
Finally, the resulting bands are merged to get the display as in Figure 1.

5 Formal Verification of Pairwise Prevention Bands Algorithms

The functions track_line and track_circle discussed in Section 4.2 have been verified correct for
conflict resolution, i.e., they compute vectors that yield conflict free trajectories for the ownship, and
complete for track prevention bands, i.e., they compute all critical vectors where the track bands change
colors. These functions are slightly different from the original ones presented in [8]. Indeed, the functions
presented in that report, while correct for conflict resolution, failed to compute all the critical vectors.
For conflict prevention bands this is a safety issue, because a region that should be colored red can be
colored green instead. Interestingly, those functions, which had been tested on over 10,000 test cases
without any error manifestations, were in fact incorrect. The deficiencies in these functions were only
found during the formal verification process!

The general idea of the correctness proof of the prevention bands algorithms is as follows:

1. For a given parameter of the ownship, e.g., track angle, define a function Ωtrk : R→R, parametrized
by s, vo, and vo, that characterizes conflicts in the following way: Ωtrk(α) < 0 if and only if
conflict?(s,vα), where vα is defined as in Formula 2.

2. Prove that the critical vectors computed in Section 4.3 are complete, i.e., they compute all of the
zeros of the function Ωtrk,

3. Prove that the function Ωtrk is continuous.
4. Use the Intermediate Value theorem to deduce that any point in an open bands region, e.g., the mid-

point, determines the color of the whole band. This last step requires the existence of a conflict
probe algorithm that is proven correct, which we have already developed and verified.

This approach is illustrated in figure 5.
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Figure 5: Ωtrk Proof Approach

The discovery of this Ωtrk proof approach also directly influenced the final bands algorithms. Orig-
inally we expected to compute the color of a region. This proof method lead us to the idea of using the
CD3D conflict probe on the midpoint of the region in order to color the region.

We first tried this proof approach on a simplified version of the problem: the two-dimensional
ground speed bands with infinite lookahead time. In this case, the function Ωgs must characterize
conflict?(s,vk), where vk =

k
gs(v)v.

The following formula provided the needed relationship between horizontal conflict that does not
include a quantification over time:

horizontal conflict?(s,v) ⇐⇒ s ·v < Rdet(v,s)<−s ·v, (5)

where, R is defined as in Formula 4.
The function Ωgs was constructed based on this theorem. The resulting function required the use

of if-then-else logic so the proof that it was continuous was tedious. After much effort, we were able
to prove in PVS that the ground-speed functions gs_line and gs_circle, which are analogous to
track_line and track_circle, were complete assuming no look-ahead time.

The lesson learned from this first attempt was that we needed a more abstract way of defining the
functions Ωgs and Ωtrk so that the complexity of the continuity proofs could be untangled from the
subtleties of the track and ground speed resolutions. With this in mind, we defined a function Ω : Rn→R,
parametrized by s, vo, and vo, such that Ωtrk = Ω ◦ vα and Ωgs = Ω ◦ vk. The continuity of Ωtrk and
Ωgs is a consequence of the continuity of Ω, which was proved once and for all for all kinds of bands,
and the continuity of vα and vk. All this seems straightforward except that there are several technical
difficulties.

The function Ω is closely related to the function that computes the minimum distance between two
aircraft. That function is, in general, noncontinuous for an infinite lookahead time. Interestingly, it is
continuous when a lookahead time is considered, but the general proof of this fact requires the use of
vector variant of the Heine-Cantor Theorem, i.e., if M is a compact metric space, then every continuous
function f : M → N, where N is a metric space, is uniformly continuous. Furthermore, the minimum
distance function may have flat areas. Therefore, special attention has to be paid to the definition of Ω

to guarantee that the set of critical points is finite. Otherwise, it cannot be proven that the critical vector
functions are complete.

The next sections discuss the formal verification of the prevention bands algorithms with lookahead
time for both the 2-D and 3-D cases.
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5.1 Verification of 2D Prevention Bands

In the 2-dimensional case, a direct definition of Ω is possible by using τ , the time of minimal horizontal
separation between two aircraft:

τ(s,v) = −s ·v
v2 . (6)

From τ , we can define Ω as follows:

Ω(v) = (s+min(max(0,τ(s,v)),T )v)2−D2, (7)

where s is the relative distance between the ownship and the traffic aircraft.
The use of square distances in Formula 7 avoids the use of the square root function. Since the

minimum and maximum of a continuous function is continuous, the use of min and max is easier to
handle than the if-then-logic used in our first attempt.

The function Ω is not defined when v is 0. Therefore, rather than using Ω directly, we used the
function v 7→ v2Ω(v), which is defined everywhere, and proved that it is continuous and that it correctly
characterizes conflicts, i.e., conflict?(s,v) if and only if v2Ω(v)< 0.

The function v2Ω(v) has an infinite number of zeroes in some special cases, e.g., when s is at the
border of the protected zone, i.e, when s2 = D2. In those, special cases, we use an alternative charac-
terization of conflicts that has the required properties. In August 2009, we completed the proof of the
2-dimensional track and ground speed bands with finite lookahead time. For additional technical details
on this formal development, we refer the reader to [7].

5.2 Verification of 3D Prevention Bands

The verification of the 3D conflict prevention bands algorithm is similar to that of the 2D algorithm.
Indeed, many of the geometrical concepts critical to the verification in the 2D case can be generalized to
the 3D case. However, these generalizations are typically nontrivial because, geometrically, a circle (a
2D protected zone) is much easier to work with than a cylinder (a 3D protected zone). The Ω function
used in the verification of the 2D algorithm uses the horizontal time of minimum separation τ , which is
easy to compute analytically. In contrast, the fact that a cylinder is not a smooth surface indicates that a
3D generalization of the Ω function will not be as simply defined.

Despite these geometric challenges, a concept was discovered that can be used to simplify geom-
etry problems involving distance on cylinders. This concept is the notion of a normalized cylindrical
length [2]:

||u||cyl = max(

√
u2

x +u2
y

D
,
|uz|
H

). (8)

This metric nicely reduces horizontal and vertical loss of separation into a single value. Indeed, if s is
the relative position vector of two aircraft, then ||s||cyl < 1 if and only if the aircraft are in 3D loss of
separation.

Using the cylindrical distance metric, the Ω function can be defined in the 3D case as follows.

Ω3D(v) = min
t∈[0,T ]

||s+ t ·v||cyl−1, (9)

where S is the relative position vector between the ownship and traffic aircraft. An immediate conse-
quence of this definition is that two aircraft are in conflict if and only if Ω3D(v)< 0.
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The correctness of the prevention bands algorithms relies on the fact that Ω3D is a continuous function
of v, that the set of critical vectors, i.e., the zeroes of the function, is finite, and that the critical vector
algorithms are complete.

For many functions, a proof of continuity follows immediately from definitions. In this case, the
function Ω3D is a minimum over the closed interval [0,T ]. While standard methods from differentiable
calculus are often employed in similar problems, this function is a minimum of a non-differentiable
function, namely the cylindrical length. Its closed form involves several if-else statements and it would be
difficult to use directly in a proof of continuity. Thus, somewhat more abstract results from real analysis
were needed to be extended to vector analysis, e.g., the notion of limits, continuity, compactness, and
finally the Heine-Cantor Theorem.

As in the 2-dimensional case, the function Ω3D may have flat areas and, consequently, in some special
cases, may have an infinite number of critical zeros. We carefully identified these special cases and then
used an alternative definition of Ω3D. These special cases are extremely rare, indeed all the missing
critical vectors in the original algorithms presented in [8] were due to these special cases. Although they
are rare, dealing with them is necessary for the correctness proof of the algorithms. If one critical vector
is missing, the coloring of the bands will be potentially switch from red to green or vice-versa.

Finally, the PVS proof that the algorithms find all of the critical points is less abstract but more
tedious than the proof of continuity. It required the development of several PVS theories about the Ω3D

function, which are general enough to be used in other state-based separation assurance algorithms. The
proof of the correctness of the 3-dimensional algorithms for track, ground speed, and vertical speed with
finite lookahead time was complete in December 2009.

6 Verification of the Merge Algorithm

Having developed methods to calculate pairwise solutions (see section 4.3), we turned to the problem
of merging all of the pairwise solutions into a single set of bands for all aircraft (second problem listed
in section 3). Our original approach relied on complex reasoning about overlapping regions coupled
with precedence rules: an amber region take precedence over a green region but not a red region. We
developed a Java version that “worked,” but it was soon obvious that this solution was complex enough
that it could not be implicitly trusted. We decided that a formal verification of the merge algorithm was
necessary.

As we began considering how to formally specify and analyze this merge algorithm, we recognized
two problems with our approach. First, our algorithm was specialized to the precise problem we were
working; almost any change to the system would require a new algorithm and therefore a new verifica-
tion. The other problem was that our algorithm was monolithic; there was no obvious decomposition into
general pieces that could be verified once and used in different contexts. To resolve these problems, we
soon realized that standard set operations (set union, set difference, etc.) could be used to implement not
only the multiple-aircraft merge problem, but also the different colors of conflict prevention information.

Suppose we had a way of determining the set of track angles that have a loss of separation within
time T , denoted G<T . Then since Tred < Tamber, we can define the colored bands of track angles in terms
of this new set:

Gred = G<Tred

Gamber = G<Tamber −G<Tred

Ggreen = {α |0◦ ≤ α < 360◦}− G<Tamber

This observation simplified the analysis, because only one set, G<T needed to be analyzed.
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Next, we observed that each aircraft’s contribution to the set G<T is independent of all other traffic;
thus, the problem neatly divides into a series of aircraft pairs: the ownship and each traffic aircraft. If
we use G o,i

<T to represent the set of track angles which cause a loss of separation within time T between
traffic aircraft i and the ownship o, then the set of track angles for all traffic is then be formed by

G<T =
⋃

i∈traffic

G o,i
<T

This observation simplified the analysis again, because now we only needed to find the track angles
which cause a conflict between two aircraft, denoted by the set G o,i

<T . The set G o,i
<T corresponds to output

of the algorithm presented in section 4.3 except the two lookahead times are replaced with one time, T .
By using set operations we had a well-defined specification of the key parts of our merge algorithm.

However common implementations of sets in programming languages do not include efficient ways
to deal with ranges of floating point numbers; therefore, we chose to implement our own. We then
performed a code-level verification of the set union and set difference operations that were used in the
merge algorithm.

Each band is represented by an interval describing its minimal and maximal values, with the set of
all bands of one color being an interval set. These interval sets were internally represented by arrays
of (ordered) intervals. Necessary properties for the implementation would be that the data structures
representing the bands remained ordered and preserved the proper value ranges within a set of bands.

Set union combines overlapping bands as appropriate and set difference involves breaking larger
bands into smaller ones. There were two complications in the verification. The first complication arose
because the implementation used a subtle notion of ordering where a zero or a positive value represents
an actual position in the array of intervals, but a negative value represents a point between (or beyond)
the intervals currently in the set. Although tedious, this verification was completed without issues. The
second complication resulted from the boundary conditions. The original Java implementation did not
clearly indicate whether the endpoints of a band of green angles were part of that the green band, or if
they were part of the next band. The formal verification brought this issue forward. It was not possible
to exclusively use closed or open intervals for both union and difference operations: the use of one
necessitates the use of the other. For instance, removing a closed interval, which includes the endpoints,
leaves us with open intervals—everything up to, but not including, these end points. Also, removing two
adjacent open intervals leads to a left over point between them.

At this point we had an implementation issue. Should we use fully general set operations with open
and closed intervals, or should we use set operations with well-defined, but non-standard semantics.
In the interest of having a consistent interface and eliminating redundant code, we decided to take the
second route. The union operation would assume that inputs would be closed intervals and therefore, the
result would be closed intervals. The difference operations would assume that the set to be subtracted
would consist of only open intervals and therefore, the result would be only of closed intervals. As
mentioned above, this lead to the possibility of introducing artifacts of singleton intervals, where both
endpoints have the same value. After consideration, however, we realized these points could be safely
eliminated, as they are equivalent to a critical point at a local minimum or maximum. Green singletons
could be eliminated without introducing additional danger, and a red singleton would represent a brush
against (but not a cross into) the traffic aircraft’s protected zone.

The formal verification of merge algorithm required us to think deeply about what the merge algo-
rithm was trying to accomplish. During this analysis process we were able to develop an elegant solution
which can be presented in a paragraph of text, instead of a complicated 400 line Java program with many
special cases. In addition the formal verification process required us to clearly specify how our algorithm
would behave at the points where there is a transition from one color to another.
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Figure 6: Screenshot of Track Prevention Band Display

7 Java and C++ Implementations

Ultimately these algorithms will be brought into large simulation environments where they will be eval-
uated for performance benefits (improvements to airspace capacity or aircraft efficiency). Some of these
simulation environments are in Java and some are in C++. Therefore a requirement of this project was
not only to develop an algorithm and verify it, but to also produce Java and C++ implementations of the
algorithm. The initial Java version of the algorithm was available in December 2008 (see Figure 6). This
version successfully passed the limited test suite we developed. By the summer of 2009 we had a C++
version and the testing apparatus to verify exact agreement between the Java and C++ versions, along
with a regression suite of 100 test scenarios.

Since PVS is a specification language and contains non-computable functions, we deliberately re-
stricted our use of PVS in the specification of our algorithms to only the computable elements. In this
way there was a direct translation of PVS into Java or C++. We are currently developing a tool to au-
tomatically convert PVS specifications into Java [5], but the tool is not yet mature enough to handle the
specification of these kinds of algorithms. However, we ran into problems even in our manual conversion
of the algorithm. For instance, the PVS libraries contain all the appropriate vector operations (addition,
dot-product, etc.) but libraries do not exist for these operations in standard Java or C++. We searched
for a third-party library to offer these functions, but there were two downsides to these libraries. First,
we wanted the same algorithm in both Java and C++, but most libraries were targeted to only one pro-
gramming language. Second, we desired a library with identical semantics in both languages. But even
when we found libraries that supported both languages, we inevitably discovered certain quirks in their
implementation. For example, One vector library took full advantage of the imperative nature of the
Java language, implementing functions on vectors which would change the components of the vector.
While this results in efficient code, because object creation is not necessary, it does not closely relate to
the functional style of PVS. Because of these incompatibilities, we chose to implement our own vector
libraries. For similar reasons, we developed our own set operations (union and intersection).

Even with this hand translation, we still do not have an exact behavioral replica of the PVS in Java
or C++. The most glaring difference is that Java and C++ use floating point numbers while PVS uses
actual real numbers. All of our verifications in PVS are accomplished with vectors defined over the real
numbers. This can be thought of as computation using infinite precision arithmetic. Clearly, our Java
and C++ implementations execute on less powerful machines than this. There are several places where
we must be especially careful:

• Calculation of quadratic discriminants. Since we are often computing tangents, the theoretical
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value is zero, but the floating point answer can easily be a small negative number near zero. In this
case, we would miss a critical point.

• The possibility of the mid-point of a region being very close to zero.

Finally, another aspect related to this issue is that the data input into the algorithm is not precise. A
standard engineering assumption is that the error in the input data will overwhelm any error introduced
by floating point computations. However, we would like to make a formal statement that includes both
data and computational errors.

8 Conclusions

In this paper, we have presented a short history of the development and formal verification of prevention
bands algorithms. The resulting track-angle, ground speed, and vertical speed bands algorithms are far
more simple than our earlier versions. The goal of completing a formal proof forced us to search for
simplifications in the algorithms and in the underlying mathematical theories. A key insight that enabled
the completion of this work, is that trigonometric analysis should be deferred until the latest possible
time. Although, the project took far longer than we expected, we are very pleased with the elegance and
efficiencies of the discovered algorithms.
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[8] Jeffrey Maddalon, Ricky Butler, César Muñoz, and Gilles Dowek. A mathematical basis for the safety analysis
of conflict prevention algorithms. Technical Report TM-2009-215768, NASA Langley, June 2009.

[9] S. Owre, J. Rushby, and N. Shankar. PVS: A prototype verification system. In Deepak Kapur, editor, Proc.
11th Int. Conf. on Automated Deduction, volume 607 of Lecture Notes in Artificial Intelligence, pages 748–
752. Springer-Verlag, June 1992.


	Introduction
	Notation
	The Start of the Project
	Search for an Analytical Solution
	Track Only Geometric Solution
	Solution with Lookahead Time
	The Track Bands Algorithm

	Formal Verification of Pairwise Prevention Bands Algorithms
	Verification of 2D Prevention Bands
	Verification of 3D Prevention Bands

	Verification of the Merge Algorithm
	Java and C++ Implementations
	Conclusions

